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CHAPTER 13 FREQUENCY RESPONSE ANALYSIS (Nyquist Plot) 

Name Harry Nyquist 

Born February 7, 1889, Sweden 

Died 
April 4, 1976 (aged 87) 

Texas, U.S. 

Residence United States 

Nationality American 

Fields Electronic engineer 

 

 

After completing this chapter, the students will be able to: 

• Sketch a Nyquist diagram, 

• Use the Nyquist criterion to determine the stability of open-loop and closed-loop 

systems 

• Find stability and gain and phase margins using Nyquist diagrams. 

1. Introduction 

The performance of a control system is more realistically measured by its time-domain 

characteristics. The reason is that the performance of most control systems is judged 

based on the time responses due to certain test signals. This is in contrast to the analysis 

https://en.wikipedia.org/wiki/Sweden
https://en.wikipedia.org/wiki/Texas
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/Electronic_engineer
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and design of communication systems for which the frequency response is of more 

importance, since most of the signals to be processed are either sinusoidal or composed 

of sinusoidal components. 

The time response of a control system is usually more difficult to determine analytically, 

especially for high-order systems. In design problems, there are no unified methods of 

arriving at a designed system that meets the time-domain performance specifications, 

such as maximum overshoot, rise time, delay time, settling time, and so on. On the other 

hand, in the frequency domain, there is a wealth of graphical methods available that are 

not limited to low-order systems. It is important to realize that there are correlating 

relations between the frequency-domain and the time-domain performances in a linear 

system, so the time-domain properties of the system can be predicted based on the 

frequency-domain characteristics. The frequency domain is also more convenient for 

measurements of system sensitivity to noise and parameter variations. With these 

concepts in mind, we consider the primary motivation for conducting control systems 

analysis and design in the frequency domain to be convenience and the availability of 

the existing analytical tools. Another reason is that it presents an alternative point of 

view to control-system problems, which often provides valuable or crucial information 

in the complex analysis and design of control systems.  

 

The polar plot is the locus of vectors as ω is varied from zero to infinity. 

Note that in polar plots a positive (negative) phase angle is measured counter clockwise 

from the positive real axis. The polar plot is often called the Nyquist plot. An example 

of such a plot is shown in Fig. 1. Each point on the polar plot of G(jω) represents the 

terminal point of a vector at a particular value of ω. In the polar plot, it is important to 

show the frequency graduation of the locus. The projections of G(jω) on the real and 

imaginary axes are its real and imaginary components. 
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Fig. 1 Polar plot 

Polar plot of Integral term: 

The magnitude and angle of the integral term is represented as: 

 

The polar plot is shown in Fig. 2. That is coincide with the negative imaginary axis. 

 

Fig. 2, Polar plot of integral term 

Polar plot of Derivative term: 

The magnitude and angle of the derivative term is represented as: 

𝐺(𝑗𝜔) = 𝑗𝜔     →  𝐺(𝑗𝜔) = 𝜔∠90 

The polar plot is coincide with the positive imaginary axis as shown in Fig. 3. 
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Fig. 3, Polar plot of derivative term 

Polar plot of First-Order term: 

A) Assuming that the first-order term is in numerator: 

𝐺(𝑠) = 𝑆 + 1   → 𝐺(𝑗𝜔) = 1 + 𝑗𝜔 

ω Real part Imag. part 

0 1 0 

1 1 1 

2 1 2 

3 1 3 

4 1 4 

…   

∞ 1 ∞ 

Assuming that the first-order term is in denominator: 

𝐺(𝑠) =
1

𝑆 + 1
     →    𝐺(𝑗𝜔) =

1

1 + 𝑗𝜔
×

1 − 𝑗𝜔

1 − 𝑗𝜔
=

1

1 + 𝜔2
− 𝑗

𝜔

1 + 𝜔2
 

ω Real part Imag. part 

0 1 0 

0.5 0.8 −0.4 

1 0.5 −0.5 

2 0.2 −0.4 

3 0.1 −0.3 

…   

∞ 0 0 

In general, 

𝐺(𝑠) =
1

𝑇𝑆 + 1
     →    𝐺(𝑗𝜔) =

1

1 + 𝑗𝜔𝑇
×

1 − 𝑗𝜔𝑇

1 − 𝑗𝜔𝑇
=

1

1 + 𝑇2𝜔2
− 𝑗

𝜔𝑇

1 + 𝑇2𝜔2
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The polar plot of this transfer function is a semicircle as the frequency ω is varied from 

zero to infinity, as shown in Fig. 3. The center is located at 0.5 on the real axis, and the 

radius is equal to 0.5. 

 

Fig. 3 Polar plot of first-order system 

Polar plot of Second-Order term: 

 

The polar plot of underdamped, second-order transfer function starts at 10 and ends at 

0-180 as ω increases from zero to infinity. Thus, the high-frequency portion of G(jω) 

is tangent to the negative real axis as shown in Fig. 4. 

 

Fig. 4 Polar plot of second-order term 
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For the underdamped case at ω=ωn, we have G(jωn)=1/(j2ζ), and the phase angle at ω = 

ωn is –90°. Therefore, it can be seen that the frequency at which the G(jω) locus 

intersects the imaginary axis is the undamped natural frequency ωn. In the polar plot, 

the frequency point whose distance from the origin is maximum corresponds to the 

resonant frequency ωr. The peak value of G(jω) is obtained as the ratio of the magnitude 

of the vector at the resonant frequency ωr to the magnitude of the vector at ω = 0. 

Polar plot is defined as the locus of the magnitude of the loop T.F. |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| and 

the angle ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) in the GH plan as ω varies from 0 to . We can obtain 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) from 𝐺(𝑠)𝐻(𝑠) by replacing s by jω 

Nyquist plot is defined as the locus of the magnitude of the loop T.F. |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| 

and the angle ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) in the GH plan as ω varies from ˗ to . 

When draw polar / Nyquist plot, we must consider the following points: 

1- Plot is free hand, 

2- Compute |𝐺(𝑗𝜔)𝐻(𝑗𝜔)| and ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) at ω = 0 and  only,  

3- Calculate the point(s) of intersection of the plot with real and imaginary axis of 

GH plan and the corresponding value of ω. Taking in consideration type (0) 

systems don’t intersect with real or imaginary axes 

Example (1): 

Draw the polar plot for the system whose open loop T.F. is 

𝐺(𝑠)𝐻(𝑠) =
10

𝑆 + 1
 

Step #1: Replace each S by jω, then find an expression for the magnitude and phase 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =
10

1 + 𝑗𝜔
 

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| =
10

√1 + 𝜔2
;  ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) = −𝑡𝑎𝑛−1(

𝜔

1
) 

Step #2: Calculate the magnitude and angle of GH at ω = 0 

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = 10;  ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) = 0 

Step #3: Calculate the magnitude and angle of GH at ω →  
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|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = 0;  ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) = −90 

Step #4: Intersection with real axis 

No intersection as the system is type (0) 

Step #5: intersection with imaginary axix 

No intersection as the system is type (0) 

The polar plot is as shown in Fig. 5. 

 

Fig. 5, Polar plot of example (1) 

Example (2): 

Draw the polar plot for the system whose open loop T.F. is 

𝐺(𝑠)𝐻(𝑠) =
10(𝑆 + 5)

𝑆 + 1
 

Step #1: Replace each S by jω, then find an expression for the magnitude and phase 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =
10(5 + 𝑗𝜔)

1 + 𝑗𝜔
 

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| =
10√25 + 𝜔2

√1 + 𝜔2
;  ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) = 𝑡𝑎𝑛−1(

𝜔

5
) − 𝑡𝑎𝑛−1(

𝜔

1
) 

Step #2: Calculate the magnitude and angle of GH at ω = 0 

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = 50;  ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) = 0 

Step #3: Calculate the magnitude and angle of GH at ω →  

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = 10;  ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) = 0 

Step #4: Intersection with real axis 

No intersection as the system is type (0) 

Step #5: intersection with imaginary axix 

No intersection as the system is type (0) 
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The polar plot is as shown in Fig. 6 

 
Fig. 6, Polar plot of example (2) 

For type 0 systems: The starting point of the polar plot (which corresponds to ω=0) is 

finite and is on the positive real axis. The tangent to the polar plot at ω=0 is 

perpendicular to the real axis. The terminal point, which corresponds to ω=, is on real 

axis, and the curve is tangent to one of the axes according to the number of poles. 

Example (3): 

Draw the polar plot for the system whose open loop T.F. is 

𝐺(𝑠)𝐻(𝑠) =
10

𝑆(𝑆 + 1)
 

Step #1: Replace each S by jω, then find an expression for the magnitude and phase 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =
10

𝑗𝜔(1 + 𝑗𝜔)
 

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| =
10

𝜔 √1 + 𝜔2
;  ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) = −90 − 𝑡𝑎𝑛−1(

𝜔

1
) 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =
10

𝑗𝜔(1 + 𝑗𝜔)
=

10

−𝜔2 + 𝑗𝜔
×

−𝜔2 − 𝑗𝜔

−𝜔2 − 𝑗𝜔
=

−10

𝜔2 + 1
− 𝑗

10

𝜔3 + 𝜔
 

Step #2: Calculate the magnitude and angle of GH at ω = 0 

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = ∞;  ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) = −90 

Step #3: Calculate the magnitude and angle of GH at ω →  

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = 0;  ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) = −180 

Step #4: Intersection with real axis 

As the system is type (1): to get the intersection with real, take the imaginary part = 0 

10

𝜔3 + 𝜔
= 0 →   𝜔 =  ∞     (𝑛𝑜 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛) 
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Step #5: intersection with imaginary axix 

As the system is type (1): to get the intersection with imaginary, take the real part = 0 

−10

𝜔2 + 1
 = 0 →   𝜔 =  ∞    (𝑛𝑜 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛) 

 

Example (4): 

Draw the polar plot for the system whose open loop T.F. is 

𝐺(𝑠)𝐻(𝑠) =
1

𝑆(𝑆 + 1)(𝑆 + 0.5)
 

Step #1: Replace each S by jω, then find an expression for the magnitude and phase 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =
1

𝑗𝜔(1 + 𝑗𝜔)(0.5 + 𝑗𝜔)
 

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| =
1

𝜔 √1 + 𝜔2√0.25 + 𝜔2
;  ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) = −90 − 𝑡𝑎𝑛−1(

𝜔

1
) − 𝑡𝑎𝑛−1(

𝜔

0.5
) 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =
1

𝑗𝜔(1 + 𝑗𝜔)(0.5 + 𝑗𝜔)

=
1

−1. 5𝜔2 + 𝑗(−𝜔3 + 0.5𝜔)
×

−1.5𝜔2 − 𝑗(−𝜔3 + 0.5𝜔)

−1.5𝜔2 − 𝑗(−𝜔3 + 0.5𝜔)

=
−1.5𝜔2

2.25𝜔4 + (0.5𝜔 − 𝜔3)2
− 𝑗

−𝜔3 + 0.5𝜔

2.25𝜔4 + (0.5𝜔 − 𝜔3)2
 

Step #2: Calculate the magnitude and angle of GH at ω = 0 

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = ∞;  ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) = −90 

Step #3: Calculate the magnitude and angle of GH at ω →  

|𝐺(𝑗𝜔)𝐻(𝑗𝜔)| = 0;  ∠𝐺(𝑗𝜔)𝐻(𝑗𝜔) = −270 
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Step #4: Intersection with real axis 

As the system is type (1): to get the intersection with real, take the imaginary part = 0 

−𝜔3 + 0.5𝜔

2.25𝜔4 + (0.5𝜔 − 𝜔3)2
= 0 → 𝜔2 = 0.5 →  𝜔𝑐 = 0.707 

Real distance can be obtained by substituting the value of ωc in the real part 

𝑟𝑒𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
−1.5 × 0.5

2.25 × 0.25
= −1.35 

Step #5: intersection with imaginary axix 

As the system is type (1): to get the intersection with imaginary, take the real part = 0 

−1.5𝜔2

2.25𝜔4 + (0.5𝜔 − 𝜔3)2
 = 0 →   𝜔 =  ∞    (𝑛𝑜 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛) 

 

For type 1 systems: the jω term in the denominator contributes –90° to the total phase 

angle of G(jω). At ω=0, the magnitude of G(jω) is infinity, and the phase angle becomes 

–90°. At low frequencies, the polar plot is asymptotic to a line parallel to the negative 

imaginary axis. At ω=, the magnitude becomes zero, and the curve converges to the 

origin and is tangent to one of the axes. 

 

2. Nyquist Criterion 

Because the Nyquist criterion is a graphical method, we need to establish the concepts 

of encircled and enclosed, which are used for the interpretation of the Nyquist plots for 

stability. 
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Encircled: 

A point is said to be encircled by a closed path if it is found inside the path. 

For example, point A in Fig. 5(a) is encircled by the closed path Γ, because A is inside 

the closed path. Point B is not encircled by the closed path Γ, because it is located outside 

the path. 

Enclosed: 

A point is said to be enclosed by a closed path if it lies to the left of the path when the 

path is traversed in CCW direction. 

The concept of enclosure is particularly useful if only a portion of the closed path is 

shown. For example, point A in Fig. 5(b) is enclosed by Γ. However, point B isn’t 

enclosed. 

                          

Fig. 5, (a) definition of Encircled                                (b) definition of Enclosed 

 

Number of Encirclements (N) 

When a point is encircled by a closed path Γ, a number N can be assigned to the number 

of times it is encircled. The magnitude of N can be determined by drawing an arrow 

from the point to any arbitrary point s1 and consider it as starting point, then follow the 

path in the prescribed direction until it returns to the starting point. The total net number 

of revolutions is N, which is positive for CCW encirclement and negative for CW 

encirclement. For example, point A in Fig. 6(a) is encircled once in CW direction (N= -

1) and point B is encircled twice in CW direction (N= - 2). In Fig. 6(b), point A is 

encircled once in CCW direction (N=+1), and point B is encircled twice (N=+2).  
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Fig. 6, Definition of number of encirclement (N) 

 

The stability of linear control systems is analysed by constructing the Nyquist path, 

which is a closed contour in the s plane enclose the entire right-half of s plane. The 

contour consists of the entire jω axis from ω=– to  and a semi-circular path of infinite 

radius in the right-half of s plane in the clockwise (CW) or counter clockwise (CCW) 

direction. Therefore, the Nyquist path encloses the entire right-half s plane and encloses 

all the zeros and poles of 1+G(s)H(s) that have positive real parts as shown in Fig. 7 (a). 

The Nyquist path must not pass through poles or zeros of G(s)H(s), if the function 

G(s)H(s) has poles or zeros at the origin (or at any point on the jω axis), the Nyquist 

path must be modified by using a semicircle with radius ε → 0 as shown in Fig. 7 (b). 

 
Fig. 7, (a) Nyquist contour                        (b) Nyquist contour with pole at origin 
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For the control system shown in Fig. 8,  

G(s)H(s) is called open loop T.F. 

 is called closed-loop T.F. 

1+G(s)H(s) is called characteristic equation 

 

Fig. 8, Closed-loop control system 

𝐺(𝑠)𝐻(𝑠) =
𝑍𝑜

𝑃𝑜
 

1 + 𝐺(𝑠)𝐻(𝑠) = 1 +
𝑍𝑜

𝑃𝑜
=

𝑃𝑜 + 𝑍𝑜

𝑃𝑜
=

𝑍−1

𝑃−1
 

It is clear that the open-loop poles = characteristic-equation poles (Po = P-1) 

Also, the characteristic equation zeros Z-1 = closed-loop T.F. poles 

Mapping Theory: 

If an open-loop transfer function G(s)H(s) is represented by a ratio of two polynomials 

as function of s, and Po be the number of poles and Zo be the number of zeros of G(s)H(s) 

that lie inside the closed contour in the s plane. And this contour does not pass through 

any poles or zeros of G(s)H(s). This closed contour in the s plane is then mapped into 

the GH plane as a closed curve. The total number of encirclements (No) around the 

origin of GH plane, as a representative point s traces out the entire contour in the 

clockwise direction, is equal to Zo-Po. (Note that by this mapping theory, the numbers 

of zeros and of poles cannot be found - only their difference.) 

𝑁𝑜 = 𝑍𝑜 − 𝑃𝑜 

Where No is the number of encirclements around the origin made by the mapped path 

Zo is total number of zeros of GH(s) located at RHS of s-plane 
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Po is total number of poles of GH(s) located at RHS of s-plane 

As illustrated in Fig. 9, the path in s-plane ΓS is started at S1 → S2 → S3 …. etc. the 

mapped path in GH plane ΓGH is also started at GH(S1) → GH(S2) → GH(S3). The 

direction of ΓGH can be either CW or CCW, that is, in the same direction or the opposite 

direction as that of ΓS depending on the function GH(S). 

 

Fig. 9, (a) S-plane contour ΓS                           (b) Mapped plot ΓGH  

 

There are 3 possible cases: 

1) (No > 0) Zo > Po this means No is positive integer. This means the mapped path in 

GH plane (ΓGH) encircles the origin of GH No times in the same direction of ΓS. 

2) (No = 0) Zo = Po this means no encirclement around origin of GH plane 

3) (No < 0) Zo < Po this means No is negative integer. This means the mapped path 

in GH plane (ΓGH) encircles the origin of GH No times in opposite direction of ΓS. 

The above 3 cases can be summarized in the following table: 

Cases of N N = Z – P 
Direction 

of ΓS 

Number of 

Encirclements 
Direction of ΓGH 

1 N > 0 
CW 

CCW 

N 

N 

CW 

CCW 

2 N = 0 
CW 

CCW 

0 

0 
No encirclement 

3 N < 0 
CW 

CCW 

N 

N 

CCW 

CW 
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The best way to determine the number of encirclements with respect to origin or any 

point is to draw a line from that point in any direction to a point out of the mapped path 

(ΓGH); the number of net intersections of this line with the (ΓGH) gives the magnitude of 

N as shown in Fig. 10. 

    

    
Fig. 10, Determination of number of encirclement 

How to map Nyquist contour from S-plane to GH plane? 

Example (5): 

𝐺𝐻(𝑠) =  
40

𝑆(𝑆 + 2)(𝑆 + 3)
 

The Nyquist contour will be as shown in Fig. 11, and we can divide this Nyquist contour 

into 4 sections. 

 
Fig. 11, Nyquist path in S-plane 
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For section (2),  

we replace each S by ε ejθ (ε→0), (θ take values 90, 45, 0, - 45, - 90) 

𝐺𝐻(𝜖𝑒𝑗𝜃) =  
40

𝜖𝑒𝑗𝜃(𝜖𝑒𝑗𝜃 + 2)(𝜖𝑒𝑗𝜃 + 3)
 

Since ε ejθ << 2 so that it can be neglected 

Also ε ejθ << 3 so that it can be neglected, therefore GH function can be rewritten as: 

𝐺𝐻(𝜖𝑒𝑗𝜃) =  
40

𝜖𝑒𝑗𝜃(2)(3)
=  

40

6𝜖𝑒𝑗𝜃
=  ∞𝑒−𝑗𝜃 

For section (4),  

we replace each S by R ejθ (R→0), (θ take values - 90, - 45, 0, 45, 90) 

𝐺𝐻(𝑅𝑒𝑗𝜃) =  
40

𝑅𝑒𝑗𝜃(𝑅𝑒𝑗𝜃 + 2)(𝑅𝑒𝑗𝜃 + 3)
 

Since R ejθ >> 2 so that the term (2) can be neglected 

Also R ejθ >> 3 so that the term (3) can be neglected, therefore GH function can be 

rewritten as: 

𝐺𝐻(𝑅𝑒𝑗𝜃) =  
40

𝑅𝑒𝑗𝜃(𝑅𝑒𝑗𝜃)(𝑅𝑒𝑗𝜃)
=  

40

𝑅3𝑒𝑗3𝜃
= 0 𝑒−𝑗3𝜃 

For section (1),  

we replace each S by jω 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =
40

𝑗𝜔(2 + 𝑗𝜔)(3 + 𝑗𝜔)
=

40

−5𝜔2 + 𝑗𝜔(6 − 𝜔2)
×

−5𝜔2 − 𝑗𝜔(6 − 𝜔2)

−5𝜔2 − 𝑗𝜔(6 − 𝜔2)

=
−200𝜔2

25𝜔4 + 𝜔2(6 − 𝜔2)2
− 𝑗

40𝜔(6 − 𝜔2)

25𝜔4 + 𝜔2(6 − 𝜔2)2
 

Intersection with real axis 

To get the intersection with real, take the imaginary part = 0 

40𝜔(6 − 𝜔2) = 0 → 𝜔2 = 6 →  𝜔𝑐 = 2.45 

Real distance can be obtained by substituting the value of ωc in the real part 

𝑟𝑒𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
−200 × 6

25 × 36 + 0
= −1.33333 

Intersection with imaginary axis 
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To get the intersection with imaginary, take the real part = 0 

−200𝜔2   → 𝜔 = 0, (𝑁𝑜 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛)  
For section (3),  

we replace each S by – jω, and it will give same results as section (1) with opposite sign. 

The mapped Nyquist path to GH plane is shown in Fig. 12. 

 
Fig. 12, Nyquist path in GH plane 

To discuss the open-loop system stability, it is clear that Zo = 0 and Po = 0. Also, the 

number of encirclements around the origin No = 0 

Therefore, the equation No = Zo – Po is satisfied. This means the open-loop system is 

stable. 

On the other hand, to discuss the closed-loop system stability, Z-1 must be zero 

And P-1 = Po = 0 (from open-loop system) 

Therefore, the number of encirclements N-1 around (-1) must satisfy  

N-1 = Z-1 – P-1 = 0 – 0 = 0 

From Fig. 12, we found that N-1 = -2, therefore the closed-loop system is unstable 
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Example (6): 

To stabilize the system given in previous example, a zero (1+Ts) is added, find the value 

of T based on Nyquist criterion. 

𝐺𝐻(𝑠) =  
40 (1 + 𝑇𝑆)

𝑆(𝑆 + 2)(𝑆 + 3)
 

The Nyquist contour will be as shown in Fig. 12, and we can divide this Nyquist contour 

into 4 sections. 

 

Fig. 12, Nyquist path in S-plane 

For section (2),  

we replace each S by ε ejθ (ε→0), (θ take values 90, 45, 0, - 45, - 90) 

𝐺𝐻(𝜖𝑒𝑗𝜃) =  
40(𝜖𝑇𝑒𝑗𝜃 + 1)

𝜖𝑒𝑗𝜃(𝜖𝑒𝑗𝜃 + 2)(𝜖𝑒𝑗𝜃 + 3)
 

Since εT ejθ << 1 so that it can be neglected 

And ε ejθ << 2 so that it can be neglected 

Also ε ejθ << 3 so that it can be neglected, therefore GH function can be rewritten as: 

𝐺𝐻(𝜖𝑒𝑗𝜃) =  
40

𝜖𝑒𝑗𝜃(2)(3)
=  

40

6𝜖𝑒𝑗𝜃
=  ∞𝑒−𝑗𝜃 

For section (4),  

we replace each S by R ejθ (R→0), (θ take values - 90, - 45, 0, 45, 90) 



 

Electrical Engineering Department 
Dr. Ahmed Mustafa Hussein 

 

Benha University 
Faculty of Engineering at Shubra 

 

19 Chapter Twelve: Nyquist Analysis                                          Dr. Ahmed Mustafa Hussein  

 

𝐺𝐻(𝑅𝑒𝑗𝜃) =  
40 (𝑅𝑇𝑒𝑗𝜃 + 1)

𝑅𝑒𝑗𝜃(𝑅𝑒𝑗𝜃 + 2)(𝑅𝑒𝑗𝜃 + 3)
 

Since RT ejθ >> 1 so that the term (1) can be neglected 

R ejθ >> 2 so that the term (2) can be neglected 

Also R ejθ >> 3 so that the term (3) can be neglected, therefore GH function can be 

rewritten as: 

𝐺𝐻(𝑅𝑒𝑗𝜃) =  
40 𝑅𝑇𝑒𝑗𝜃

𝑅𝑒𝑗𝜃(𝑅𝑒𝑗𝜃)(𝑅𝑒𝑗𝜃)
=  

40𝑇

𝑅2𝑒𝑗2𝜃
= 0 𝑒−𝑗2𝜃 

For section (1),  

we replace each S by jω 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =
40(1 + 𝑗𝜔𝑇)

𝑗𝜔(2 + 𝑗𝜔)(3 + 𝑗𝜔)
=

40(1 + 𝑗𝜔𝑇)

−5𝜔2 + 𝑗𝜔(6 − 𝜔2)
×

−5𝜔2 − 𝑗𝜔(6 − 𝜔2)

−5𝜔2 − 𝑗𝜔(6 − 𝜔2)

=
−40𝜔2(5 − 6𝑇 + 𝜔2𝑇)

25𝜔4 + 𝜔2(6 − 𝜔2)2
− 𝑗

40𝜔(5𝜔2𝑇 + 6 − 𝜔2)

25𝜔4 + 𝜔2(6 − 𝜔2)2
 

Intersection with real axis 

To get the intersection with real, take the imaginary part = 0 

−40𝜔(5𝜔2𝑇 + 6 − 𝜔2) = 0 → 𝜔2 =
6

1 − 5𝑇
 →  𝜔𝑐 = √

6

1 − 5𝑇
 

Real distance can be obtained by substituting the value of ωc in the real part 

𝑟𝑒𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
−40[(5 − 6𝑇)(1 − 5𝑇)2 + 6𝑇(1 − 5𝑇)]

36 + 78(1 − 5𝑇) + 36(1 − 5𝑇)2
 

𝑟𝑒𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
6000𝑇3 − 6200𝑇2 + 2000𝑇 − 200

900𝑇2 − 750𝑇 + 150
 

As indicated from the Nyquist plot given in Fig. 13, the closed-loop system to be stable 

Z-1 = 0 

Also it is known that P-1 = Po = 0 (from open loop system) 

For the closed-loop system to be stable N-1 = 0 – 0 = 0 

This mean the magnitude of the real distance must be less than or equal 1, or the value 

of real distance must be greater than or equal –1. 

This gives the following inequality: 



 

Electrical Engineering Department 
Dr. Ahmed Mustafa Hussein 

 

Benha University 
Faculty of Engineering at Shubra 

 

20 Chapter Twelve: Nyquist Analysis                                          Dr. Ahmed Mustafa Hussein  

 

6000𝑇3 − 6200𝑇2 + 2000𝑇 − 200

900𝑇2 − 750𝑇 + 150
≥ −1 

6000𝑇3 − 5300𝑇2 + 1250𝑇 − 50 ≥ 0 

Solving this inequality gives: 

T ≥ 0.05 (accepted)   gives real value for ωc and ωc = √8 = 2.83 

T ≥ 0.5 (rejected)    doesn’t give real value for ωc 

T ≥ 0.3333 (rejected)   doesn’t give real value for ωc 

Intersection with imaginary axis 

To get the intersection with imaginary, take the real part = 0 

5 − 6𝑇 + 𝜔2𝑇  → 𝜔 = √
6𝑇 − 5

𝑇
  

By substitution of the values of T obtained above, we get imaginary values of ω for all 

values of T. This means no intersection with the imaginary axis. 

For section (3),  

we replace each S by – jω, and it will give same results as section (1) with opposite sign. 

The mapped Nyquist path to GH plane is shown in Fig. 13. 

 
Fig. 13, Nyquist plot in GH plane 



 

Electrical Engineering Department 
Dr. Ahmed Mustafa Hussein 

 

Benha University 
Faculty of Engineering at Shubra 

 

21 Chapter Twelve: Nyquist Analysis                                          Dr. Ahmed Mustafa Hussein  

 

As check, using Routh criterion: 

 

The system characteristic equation is: 

𝑆3 + 5𝑆2 + 6𝑆 + 40 + 40𝑇𝑆 = 0 

S3 1 40T+6 

S2 5 40 

S1 40T – 2  

S0 40  

40T – 2 ≥ 0 

T ≥ 0.05 # as obtained from Nyquist plot. 

 

Example (7): 

Given the characteristic equation of a control system: 

𝑆3 + 5𝑆2 + (𝐾 + 6)𝑆 + 8𝐾 = 0 

Using Nyquist criterion to discuss the system stability. 

𝐺(𝑆)𝐻(𝑆) =
𝐾(𝑆 + 8)

𝑆(𝑆 + 2)(𝑆 + 3)
 

The Nyquist contour will be as shown in Fig. 14, and we can divide this Nyquist contour 

into 4 sections. 

 

Fig. 14, Nyquist contour in S-plane 

For section (2),  

we replace each S by ε ejθ (ε→0), (θ take values 90, 45, 0, - 45, - 90) 
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𝐺𝐻(𝜖𝑒𝑗𝜃) =  
𝐾(𝜖𝑒𝑗𝜃 + 8)

𝜖𝑒𝑗𝜃(𝜖𝑒𝑗𝜃 + 2)(𝜖𝑒𝑗𝜃 + 3)
 

Since ε ejθ << 8 so that it can be neglected 

And ε ejθ << 2 so that it can be neglected 

Also ε ejθ << 3 so that it can be neglected, therefore GH function can be rewritten as: 

𝐺𝐻(𝜖𝑒𝑗𝜃) =  
8𝐾

𝜖𝑒𝑗𝜃(2)(3)
=  

8𝐾

6𝜖𝑒𝑗𝜃
=  ∞𝑒−𝑗𝜃 

For section (4),  

we replace each S by R ejθ (R→), (θ take values - 90, - 45, 0, 45, 90) 

𝐺𝐻(𝑅𝑒𝑗𝜃) =  
𝐾 (𝑅𝑒𝑗𝜃 + 8)

𝑅𝑒𝑗𝜃(𝑅𝑒𝑗𝜃 + 2)(𝑅𝑒𝑗𝜃 + 3)
 

Since R ejθ >> 8 so that the term (8) can be neglected 

R ejθ >> 2 so that the term (2) can be neglected 

Also R ejθ >> 3 so that the term (3) can be neglected. 

Therefore GH function can be rewritten as: 

𝐺𝐻(𝑅𝑒𝑗𝜃) =  
𝐾 𝑅𝑒𝑗𝜃

𝑅𝑒𝑗𝜃(𝑅𝑒𝑗𝜃)(𝑅𝑒𝑗𝜃)
=  

𝐾

𝑅2𝑒𝑗2𝜃
= 0 𝑒−𝑗2𝜃 

For section (1),  

we replace each S by jω 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =
𝐾(8 + 𝑗𝜔)

𝑗𝜔(2 + 𝑗𝜔)(3 + 𝑗𝜔)
=

𝐾(8 + 𝑗𝜔)

−5𝜔2 + 𝑗𝜔(6 − 𝜔2)
×

−5𝜔2 − 𝑗𝜔(6 − 𝜔2)

−5𝜔2 − 𝑗𝜔(6 − 𝜔2)

=
−𝐾𝜔2(𝜔2 + 34)

𝜔2(25𝜔2 + (6 − 𝜔2)2)
− 𝑗

𝜔𝐾(48 − 3𝜔2)

𝜔2(25𝜔2 + (6 − 𝜔2)2)
 

Intersection with real axis 

To get the intersection with real, take the imaginary part = 0 

48 − 3𝜔2  →  𝜔2 = 16 →  𝜔𝑐 = 4 

Real part: 

−𝐾(16 + 34)

25 × 16 + (6 − 16)2
=

−50𝐾

500
= −0.1𝐾 

Intersection with imaginary axis 
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To get the intersection with imaginary, take the real part = 0 

𝜔2 + 34 = 0  → 𝜔2 = −34, (𝑁𝑜 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛)  
For section (3),  

we replace each S by – jω, and it will give same results as section (1) with opposite sign. 

The mapped Nyquist path to GH plane is shown in Fig. 15. 

 
Fig. 15, Nyquist plot in GH plane 

 

As indicated from the Nyquist plot given in Fig. 15, the closed-loop system to be stable 

Z-1 = 0, Also it is known that P-1 = Po = 0 (from open loop system) 

For the closed-loop system to be stable N-1 = 0 – 0 = 0 

This mean the magnitude of the real distance must be less than or equal 1, or the value 

of real distance must be greater than or equal –1. 

This gives the following inequality: 

0.1𝐾 ≤ 1  →   𝐾 ≤ 10 

Check using Routh: 

 

the characteristic equation of a control system: 

𝑆3 + 5𝑆2 + (𝐾 + 6)𝑆 + 8𝐾 = 0 

S3 1 6+K 

S2 5 8K 

S1 (30-3K)/5  

S0 8K  

 

30 – 3K ≥ 0       →            K ≤ 10 
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Auxiliary equation: 

5S2 + 80 = 0     →           S = - 16       →    S =  J 4   which is considered as ωc # 

 

Phase Margin and Gain Margin: 

 

There are two principal measures of system stability determined via frequency methods: 

Gain Margin, and Phase Margin, whereby the degree of stability or instability may be 

quantified. This is done by measuring how close the Nyquist plot to (-1). 

Why (-1), because the characteristic equation 1+GH = 0 → GH = −1 

This means GH = 1 and GH = − 180 

Nyquist plot of GH intersects the negative real axis at a point (ωc) called phase crossover 

frequency at which the angle of GH = − 180 

Gain Margin (GM) is one of the most frequently used criteria for measuring relative 

stability of control systems. In the frequency domain, gain margin is used to indicate 

the closeness of the intersection of the negative real axis made by the Nyquist plot to 

the −1.0 point. 

G.M. is defined as the amount of gain that can be added to the open-loop T.F (GH) 

before the closed-loop system becomes unstable.  

How to calculate G.M. from polar plot: 

Step #1: replace s → jω in the open-loop T.F. to obtain GH(jω) 

Step #2: take the imaginary part and equate by zero to obtain the phase crossover 

frequency ωc. 

Step #3: calculate the real distance by substituting ωc in the real part of GH(jω). 

Step #4: Calculate the G.M. from the following formula: 

𝐺. 𝑀. =
1

|𝑟𝑒𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒|𝜔=𝜔𝑐

 

Phase Margin ΦPM: gain margin alone is inadequate to indicate relative stability when 

system parameters other than the loop gain are subject to variation. 

The definition of phase margin (ΦPM) is the angle in degrees through which the GH plot 

must be rotated about the origin so that the gain crossover passes through the -1 point. 
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Gain Crossover: The gain crossover is a point on the GH plot at which the magnitude 

of GH(jω) is equal to 1. The frequency at this point is called Gain Crossover 

Frequency (ω1). 

 

How to calculate Phase Margin ΦPM: 

Step #1: replace s → jω in the open-loop T.F. to obtain GH(jω) 

Step #2: take the absolute value of the real part of GH(jω) and equate by one to obtain 

the gain crossover frequency ω1. 

Step #3: Calculate the angle GH(jω) that is  GH(jω)ω = ω1 

Step #4: Calculate the Phase Margin ΦPM = 180 +  GH(jω)ω = ω1  

The graphical representation of calculation of both gain and phase margins in case of 

stable system is shown in Fig. 16. Where the GM > 1 and P.M is +ve 

 

Fig. 16, Stable system 

The graphical representation of calculation of both gain and phase margins in case of 

stable system is shown in Fig. 17. Where the GM < 1 and P.M is negative 



 

Electrical Engineering Department 
Dr. Ahmed Mustafa Hussein 

 

Benha University 
Faculty of Engineering at Shubra 

 

26 Chapter Twelve: Nyquist Analysis                                          Dr. Ahmed Mustafa Hussein  

 

 

Fig. 17 Unstable system 

In case of GM =1 and Phase margin = 0, the system is marginally stable as shown in 

Fig. 18. 

 

Fig. 18 Marginally stable system 

 

Advantages of the Nyquist Plot 

The stability analysis of a closed-loop system can be easily investigated by examining 

the Nyquist plot of the loop transfer function with reference to -1 point. 
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Sheet 11 (Nyquist Plots) 

(1) Draw the Nyquist plot for the unity-feedback control system with the open-

loop transfer function: 

𝐺𝐻 =
𝐾(1 − 𝑆)

𝑆 + 1
 

Using the Nyquist stability criterion, determine the stability of the closed-loop 

system. 

(2) Draw the Nyquist plot for the unity-feedback control system with the open-

loop transfer function: 

𝐺𝐻 =
𝐾(𝑆 + 3)

𝑆(𝑆 − 1)
 

Using the Nyquist stability criterion, determine the stability of the closed-loop 

system. 

(3) Draw the Nyquist plot for the unity-feedback control system with the open-

loop transfer function: 

𝐺𝐻 =
𝐾

𝑆(𝑆 + 5)
 

Using the Nyquist stability criterion, determine the stability of the closed-loop 

system. 

(4) Draw the Nyquist plot for the unity-feedback control system with the open-

loop transfer function: 

𝐺𝐻 =
𝐾(𝑆 + 1)

𝑆2(𝑆 + 9)
 

Using the Nyquist stability criterion, determine the stability of the closed-loop 

system. 

(5) Draw the Nyquist plot for the unity-feedback control system with the open-

loop transfer function: 

𝐺𝐻 =
2500

𝑆(𝑆 + 5)(𝑆 + 50)
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Using the Nyquist stability criterion, determine the stability of the closed-loop 

system, then calculate: 

a) Phase crossover frequency     [15.88 rad/s] 

b) Gain crossover frequency    [6.22 rad/s] 

c) Gain margin      [5.495] 

d) Phase margin      [31.72 ֯ ] 

 

(6) For the unity-feedback control system with the open-loop transfer function: 

𝐺𝐻 =
50

𝑆(1 + 0.1𝑆)(1 + 0.2𝑆)
 

Using the Nyquist stability criterion, determine the stability of the closed-loop 

system, then calculate: 

a) Phase crossover frequency     [7.071 rad/s] 

b) Gain crossover frequency    [            rad/s] 

c) Gain margin      [0.3] 

d) Phase margin      [                 ] 

(7) Draw the Nyquist plot for the unity-feedback control system with the open-

loop transfer function: 

𝐺𝐻 =
100

𝑆(𝑆 + 1)(𝑆2 + 2𝑆 + 2)
 

Using the Nyquist stability criterion, determine the stability of the closed-loop 

system 
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